אז מה עושים שם באוניברסיטה? פרק 8: מולקולה אחת, זה כל מה שצריך – על ננו-אלקטרוניקה

במעבדה לננו-אלקטרוניקה אנו מעוניינים לפתח רכיבים חשמליים עתידניים שגודל האלמנט הקטן בהם יהיה מסדר גודל ננומטרי

תמונה 1: שערת אדם בהגדלה פי 200. המקור: ויקיפדיה.
תמונה 1: שערת אדם בהגדלה פי 200. המקור: ויקיפדיה.

נפגשתי עם רני אריאלי כדי לשאול אותו מה עושים שם באוניברסיטה.

רני הוא דוקטורנט לכימיה-פיזיקלית באוניברסיטת תל-אביב ועובד במעבדה לננו-אלקטרוניקה של דר' יורם זלצר. את התארים הקודמים הוא עשה בתחום הפיזיקה באוניברסיטת תל-אביב גם כן. רני חובב מוזיקה ובזמנו הפנוי נהנה לנגן על גיטרה.

רני, אז מה אתם עושים שם?

אצלנו במעבדה לננו-אלקטרוניקה אנו מעוניינים לפתח רכיבים חשמליים עתידניים שגודל האלמנט הקטן בהם יהיה מסדר גודל ננומטרי (ננומטר=10-9 מטרים, לשם השוואה קוטר שערה הוא מסדר גודל של כמה עשרות מיקרומטר, מיקרומטר=10-6 מטרים).

תוכל לתת דוגמא?

כן, ודאי. דמיין לדוגמא חוט זהב שמשמש להולכת חשמל. ניתן למתוח את החוט עד למצב שבו במקום מסוים, רגע לפני יצירת קרע או נתק, נוצרת שרשרת של אטומים בודדים. זה סוג פשוט של התקן חשמלי בסדר גודל ננומטרי. היתרון בהתקן כזה הוא שההולכה החשמלית שבו היא 'בליסטית', כלומר האלקטרונים עוברים בו ללא התנגשויות באטומים ולכן בקצבים מהירים יותר. דבר זה עלול להוביל להתקנים חשמליים מעניינים יותר. אבל זה ממש לא נגמר כאן.

אנחנו יכולים לקשור באמצע השרשרת, בין אטומי הזהב, מולקולה אורגנית שהיא מולקולה הבנויה בעיקר מאטומי פחמן ומימן. לכל מולקולה כזאת ישנן תכונות אלקטרוניות שונות, למשל סידור שונה של ערכי האנרגיה שהאלקטרונים במולקולה יכולים לקבל או מיקום שונה שלהם במרחב. לכן המולקולה תשפיע בצורה שונה על אופיין ההולכה של הרכיב החשמלי. לדוגמא, סוג המולקולה משפיע על הסיכוי של אלקטרון באנרגיה מסוימת לעבור דרכה ממגע זהב אחד לשני. כך שהמולקולה משפיעה על הקשר בין זרם למתח חשמלי ובעצם קובעת את אופי הרכיב.

מגוון המולקולות האורגניות הוא עצום ולכן נוכל לייצר מגוון רחב של התקנים בעלי מאפיינים שונים. למעשה, יש כאן פוטנציאל לרכיב מודולרי שאותו ניתן 'לתפור' לפי צרכי המשתמש.

איך אתם גורמים למולקולה אורגנית אחת להתיישב לה בין אטומי הזהב בשרשרת?

אחת השיטות, למשל, היא להתחיל משני מגעי זהב המחוברים אחת לשני בצורת פפיון ולהרחיק אותם בעדינות אחד מהשני (ראו תמונה 2). בשלב מסוים אזור החיבור הצר נמתח מספיק כך שמתקבלת שרשרת אטומי זהב. המשך זהיר של פעולת המתיחה יגרום לבסוף לקרע בשרשרת, כך שאטומי הזהב שניתקו עדיין קרובים אחד לשני. כעת אחת האפשריות היא להשתמש במולקולות אורגניות המכילות אלמנט כימי שנקרא תיול (thiol). אלמנט זה מורכב מאטום גופרית ואטום מימן, ונקשר בקלות לזהב. במידה והמולקולה מכילה שני תיולים היא תוכל להיקשר לשני אטומי זהב ולהשלים את השרשרת המנותקת. כל מה שאנו צריכים לעשות הוא לטפטף על הצמתים תמיסה עם המולקולות המתאימות בתנאים הנכונים ואת שאר העבודה הן עושות לבד.

תמונה 2: איור סכמטי של תהליך יצירת ההתקן: א) מושכים את שני צידי פפיון הזהב, ב) המתיחה יוצרת שרשרת אטומים בין המגעים, ג) ממשיכים למשוך עד ליצירת נתק, ד) קושרים מולקולה אורגנית המחברת את שתי קצוות השרשרת, ה)הגדלה של המסגרת האדומה.
תמונה 2: איור סכמטי של תהליך יצירת ההתקן: א) מושכים את שני צידי פפיון הזהב, ב) המתיחה יוצרת שרשרת אטומים בין המגעים, ג) ממשיכים למשוך עד ליצירת נתק, ד) קושרים מולקולה אורגנית המחברת את שתי קצוות השרשרת, ה)הגדלה של המסגרת האדומה.

אז מה אתה עושה עם השרשראות האלה?

אני אתן לך דוגמא, באחד הפרויקטים במעבדה הקרנו אור לייזר על מגעי הזהב של אחד ההתקנים האלה (ראו תמונה 3א'). מה שראינו הוא שהקשר בין המתח לזרם החשמלי של ההתקן, כלומר האופיין שלו, השתנה בעקבות הפעלת הלייזר. לאחר מכן חזרנו על הניסוי עם מולקולות אורגניות, דמויות שרשרת, באורכים שונים והראנו שככל שהמולקולה ארוכה יותר, כך ההשפעה של הלייזר קטנה יותר.

מה הקשר בין כל הדברים האלה?

ישנם שני סוגים של אינטראקציה בין אור ושדה אלקטרומגנטי (שא"מ): תהליך פיזור שבו אלקטרון בולע פוטון ועולה לרמת אנרגיה גבוהה יותר, ותהליך שבו השא"מ משנה את הפוטנציאל החשמלי של מערכת האלקטרונים. שני התהליכים מובילים לעליה אפקטיבית באנרגית האלקטרונים כך שכעת הם יכולים לדלג ביתר קלות מעל מכשולים טורדניים, כגון מולקולה אורגנית, שמפריעים להם להגיע לאלקטרודת הזהב השניה. באלקטרודה השניה ישנם המון מצבי אנרגיה פנויים לאלקטרונים, בדיוק מה שאלקטרונים אוהבים. אבל זה רק חלק מהסיפור.

אחת התכונות החשובות של מתכות היא שהן מוצפות בים של אלקטרונים שאינם קשורים לאטומים שלהם ורק מחפשים הזדמנות להשתתף בהולכה חשמלית. כאשר מקרינים אור על מתכת, חלקו נבלע וחלקו מוחזר (כתלות באורך הגל ובמקדם הדיאלקטרי שהוא מידת ההשפעה של שדה חשמלי על החומר). עם זאת, עבור כל מתכת קיים תחום אורכי גל שבו האור לא בדיוק נבלע ולא בדיוק מוחזר, אלא גורם למשהו מיוחד.

כאשר אנו מקרינים את הלייזר באורך הגל הזה על הזהב, האלקטרונים החופשיים הרבים הנמצאים על פני השטח מתחילים לנוע בהשפעת השא"מ. תנועתם של האלקטרונים היא מחזורית ויוצרת תנודות בצפיפותם וכך גורמות לתנודות במטען החשמלי (פלזמונים).

תמונה 3: איור סכמטי המראה את הארת הלייזר שגורמת לתנודות מטען על גבי האלקטרודה. תנודות המטען משרות תנודות הפוכות באלקטרודה השניה. כך שלמשל באופן רגעי נוכל למצוא מימין עליה בריכוז המטען החיובי ומשמאל עליה בריכוז המטען השלילי.
תמונה 3: איור סכמטי המראה את הארת הלייזר שגורמת לתנודות מטען על גבי האלקטרודה. תנודות המטען משרות תנודות הפוכות באלקטרודה השניה. כך שלמשל באופן רגעי נוכל למצוא מימין עליה בריכוז המטען החיובי ומשמאל עליה בריכוז המטען השלילי.

מה התרומה של תנודות האלקטרונים לתהליך?

התנודות במטען מתפשטות על כל האלקטרודה כמו גלי ים, ובצורה זו ניתן לייצר ביתר קלות התקנים שבהם האזור המעניין אינו חשוף להארה ועדיין להיות מסוגלים להשפיע ע"י הארה. כמו כן, כאשר גלי המטען מתפשטים לעבר קצה האלקטרודה, השדה החשמלי משרה מטענים הפוכים בקצה של האלקטרודה השניה (ראו תמונה 3ב'). דבר זה מגביר את השדה האופטי המקורי ומקל עוד יותר על האלקטרונים לעבור לאלקטרודה השניה דרך המולקולה האורגנית. כל זאת ללא הפעלת מתח חיצוני נוסף, כך שאנחנו מרוויחים פעמיים על הלייזר.

ומה לגבי המולקולות בניסוי זה?

השתמשנו בניסויי במולקולות בעלות תכונות אלקטרוניות זהות אך באורכים שונים. כלומר בניסוי תפקידן של המולקולות היה לקבע את המרחק בין שתי האלקטרודות. מה שראינו הוא שככל שהמולקולות ארוכות יותר, כך הזרם שקיבלנו היה חלש יותר.

את התוצאה הזאת ניתן להסביר באופן ישיר על ידי ההשפעה של תנודות המטען. ככל שהאלקטרודות היו רחוקות אחת מהשניה, כך תנודות המטען בקצה אלקטרודה אחת השפיעו פחות על קצה האלקטרודה השניה. כלומר הגברת השדה החשמלי היתה קטנה יותר ולאלקטרון היה קשה יותר לעבור את המחסום ביחס למקרה שבו אורך המולקולה היה קצר יותר.

אז מה היה לנו? תוכל לסכם?

כיום ישנו מצב של חוסר ודאות בקהילה המדעית באשר לכמות ההגברה שמתרחשת עקב היווצרות פלזמונים. מצב זה נוצר עקב השימוש של כל קבוצת מחקר בהתקנים בעלי מימדים וקונפיגורציות מולקולריות שונים. בעזרת הניסוי הצלחנו לכמת את התופעה של ההגברה הפלזמונית עקב ההארה ולהציג עבורה ערכים כפונקציה של המרחק בין שתי האלקטרודות.

במחקר הראינו שאנו מסוגלים לדחוס אור לתוך מבנה ננומטרי המורכב מצומת מולקולארית, ועל ידי כך להשפיע על הולכת ההתקן. מכיוון שמחקרים קודמים הדגימו יכולת לשלוט על התקדמות הפלזמונים בזמן, ניתן להשתמש בשיטה זו גם על מנת לחקור את הדינמיקה של ההולכה החשמלית בזמנים קצרים מאוד. דינמיקה זו מושפעת משלל תופעות שיכולות להתרחש בהתקן עקב אינטראקציה של האלקטרונים עם תופעות אחרות בהתקן, למשל ויברציות. את נושא זה סימנו כמטרתנו הבאה!

תגובה אחת

  1. כל פרק יותר מענין מפרק קודם. מה שחסר לי בפרקים זה התיחסות למה זה משמש? למה משתמשים בשיטות וחומרים אלה?

כתיבת תגובה

האימייל לא יוצג באתר. שדות החובה מסומנים *

אתר זה עושה שימוש באקיזמט למניעת הודעות זבל. לחצו כאן כדי ללמוד איך נתוני התגובה שלכם מעובדים.