צוות מחקר אוסטרלי גילה מדוע למחשבים קוונטיים יש “בעיות זיכרון” לאורך זמן

החוקרים מצאו שהשגיאות הזעירות שמטרידות מחשבים קוונטיים אינן מופיעות באקראי. במקום זאת הן יכולות להישאר במחשב, להתפתח לאורך זמן, ואפילו להתחבר זו לזו בין רגעים שונים

כיתוב תמונה: “בלשית קוונטית” ד״ר כריסטינה ג׳יארמאצי מאוניברסיטת מקווארי (בתמונה) הובילה את הצוות שיצר לראשונה תמונה מלאה של האופן שבו שגיאות מתפתחות לאורך זמן בתוך מחשבים קוונטיים. צילום: קייט פילד. קרדיט: Kate Field
“בלשית קוונטית” ד״ר כריסטינה ג׳יארמאצי מאוניברסיטת מקווארי (בתמונה) הובילה את הצוות שיצר לראשונה תמונה מלאה של האופן שבו שגיאות מתפתחות לאורך זמן בתוך מחשבים קוונטיים. צילום: Kate Field

צוות של מדענים מאוסטרליה ומרחבי העולם יצר לראשונה תמונה מלאה של האופן שבו שגיאות מתפתחות לאורך זמן בתוך מחשב קוונטי. מדובר בפריצת דרך שעשויה להפוך מחשבים קוונטיים עתידיים לאמינים בהרבה.

החוקרים, בהובלת ד״ר כריסטינה ג׳יארמאצי מאוניברסיטת מקווארי, מצאו שהשגיאות הזעירות שמטרידות מחשבים קוונטיים אינן מופיעות באקראי. במקום זאת הן יכולות להישאר במחשב, להתפתח לאורך זמן, ואפילו להתחבר זו לזו בין רגעים שונים.

“אפשר לחשוב על זה כאילו מחשבים קוונטיים שומרים זיכרון של השגיאות,” אומרת ד״ר ג׳יארמאצי. “הזיכרון הזה יכול להיות קלאסי או קוונטי, בהתאם לאופן שבו השגיאות מקושרות זו לזו.”

“פרוטוקולים קוונטיים רבים מניחים שלמחשבים קוונטיים אין זיכרון כזה (כלומר שהתנהגותם ‘מרקוביאנית’), אבל זה פשוט לא נכון.”

ההתנהגות הזו היא אחד המכשולים המרכזיים בדרך לבניית מחשבים קוונטיים מעשיים בקנה מידה גדול.

“הצלחנו לשחזר את כל ההתפתחות של תהליך קוונטי לאורך כמה נקודות זמן, דבר שלא נעשה קודם,” אמרה ד״ר ג׳יארמאצי. “זה מאפשר לנו לראות לא רק מתי רעש מופיע, אלא איך הוא נישא לאורך הזמן.”

פריצת הדרך פותחת אפשרות לשיטות מתקדמות יותר למידול, חיזוי ותיקון שגיאות במכשירים קוונטיים. ולא רק בשבבים מוליכי־על, אלא גם במערכות כמו יונים כלואים ו וקיוביטי ספין.

“פתחנו חלון חדש לאופן שבו מערכות קוונטיות מתנהגות לאורך זמן, כאשר השגיאות שלהן מקושרות,” אמרה ד״ר ג׳יארמאצי. “זה חיוני אם אנחנו רוצים שמחשבים קוונטיים יהפכו באמת לשימושיים ולחסרי שגיאות.”

כדי להגיע לכך, הצוות ערך סדרת ניסויים על מעבדים קוונטיים מתקדמים מסוג מוליכי־על. חלקם נערכו במעבדה באוניברסיטת קווינסלנד, ואחרים בוצעו דרך מחשבים קוונטיים מבוססי ענן של IBM.

ניסיונות קודמים “למפות” את התנהגות המערכת הקוונטית לאורך זמן נתקלו כולם באותה בעיה: אחרי שמודדים מערכת קוונטית באמצע ניסוי, אי אפשר “להכין” אותה שוב בחופשיות לשלב הבא. ההכנה תלויה בתוצאת המדידה, שהיא 0 או 1.

השיטה החדשה פותרת זאת באמצעות תרגיל חכם: מניחים שב־50% מהמקרים תוצאת המדידה הייתה 1, וב־50% הנותרים היא הייתה 0. לאחר מכן משתמשים בתוכנה כדי “לעבוד לאחור” עם הנתונים ולהסיק באיזה מצב הייתה המערכת.

“החומרה יכלה לעשות את זה,” אמר שותף המחקר ד״ר פאביו קוסטה מ־Nordita בשטוקהולם. “מה שאנחנו פיצחנו הוא איך בפועל להכין את המערכת לאחר מדידה באמצע המעגל.”

החוקרים מצאו שגם המכונות הקוונטיות הטובות ביותר כיום מציגות דפוסי רעש עדינים אך חשובים שמקושרים בזמן. בין היתר, מדובר גם ברעש שהוא קוונטי באופיו ומקורו בקיוביטים סמוכים על אותו שבב.

הבנת הדפוסים האלה תסייע למדענים לתכנן כלים טובים יותר לאפיון מערכות ולתיקון שגיאות. זהו צעד חיוני בדרך למחשבים קוונטיים אמינים, “סובלניים לתקלות” (fault-tolerant).

“זה מתגמל כשרואים מודלים תיאורטיים קורמים עור וגידים על חומרה אמיתית, ובמיוחד כשהם יכולים לעזור לפתח את החומרה עצמה,” אמר טיילר ג׳ונס, שעבד על הפרויקט כדוקטורנט באוניברסיטת קווינסלנד. “אפיון חזק של קורלציות בזמן במערכות קוונטיות הוא הכרחי בדרך לבניית מכונות קוונטיות עוצמתיות.”

הצוות הפך את נתוני הניסוי ואת הקוד לזמינים באופן פתוח, והמחקר המלא פורסם בכתב העת Quantum.

למאמר בכתב העת Quantum


עוד בנושא באתר הידען:

כתיבת תגובה

האימייל לא יוצג באתר. שדות החובה מסומנים *

אתר זו עושה שימוש ב-Akismet כדי לסנן תגובות זבל. פרטים נוספים אודות איך המידע מהתגובה שלך יעובד.